Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Science ; 383(6690): eadk8544, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547289

RESUMO

Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Proteínas Adaptadoras de Transdução de Sinal , Complexo Dinactina , Dineínas , Proteínas Associadas aos Microtúbulos , Proteínas do Tecido Nervoso , Microscopia Crioeletrônica , Complexo Dinactina/química , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Humanos , Células HeLa , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Repetições WD40 , Mapeamento de Interação de Proteínas
2.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191484

RESUMO

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Assuntos
Ciliopatias , Genes Ligados ao Cromossomo X , Repetições WD40 , Animais , Humanos , Masculino , Encéfalo , Ciliopatias/genética , Cognição , Peixe-Zebra/genética
3.
Eur J Med Res ; 29(1): 13, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173030

RESUMO

BACKGROUND: The WD40 repeat (WDR) domain provides scaffolds for numerous protein-protein interactions in multiple biological processes. WDR domain 76 (WDR76) has complex functionality owing to its diversified interactions; however, its mechanism in LGG has not yet been reported. METHODS: Transcriptomic data from public databases were multifariously analyzed to explore the role of WDR76 in LGG pathology and tumor immunity. Laboratory experiments were conducted to confirm these results. RESULTS: The results first confirmed that high expression of WDR76 in LGG was not only positively associated with clinical and molecular features of malignant LGG, but also served as an independent prognostic factor that predicted shorter survival in patients with LGG. Furthermore, high expression of WDR76 resulted in the upregulation of oncogenes, such as PRC1 and NUSAP1, and the activation of oncogenic mechanisms, such as the cell cycle and Notch signaling pathway. Finally, WDR76 was shown to be involved in LGG tumor immunity by promoting the infiltration of immune cells, such as M2 macrophages, and the expression of immune checkpoints, such as PDCD1 (encoding PD-1). CONCLUSIONS: This study shows for the first time the diagnostic and prognostic value of WDR76 in LGG and provides a novel personalized biomarker for future targeted therapy and immunotherapy. Thus, WDR76 may significantly improve the prognosis of patients with LGG.


Assuntos
Glioma , Repetições WD40 , Humanos , Imunoterapia , Ciclo Celular , Perfilação da Expressão Gênica , Glioma/genética , Glioma/terapia , Prognóstico , Proteínas de Ligação a DNA , Proteínas de Ciclo Celular
4.
Acta Cir Bras ; 38: e386223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055397

RESUMO

PURPOSE: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. METHODS: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. RESULTS: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. CONCLUSIONS: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Assuntos
NF-kappa B , Pré-Eclâmpsia , Gravidez , Camundongos , Feminino , Animais , Humanos , NF-kappa B/metabolismo , Pré-Eclâmpsia/metabolismo , Repetições WD40 , Placenta , Trofoblastos/metabolismo , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
J Med Chem ; 66(24): 16783-16806, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38085679

RESUMO

The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.


Assuntos
Antineoplásicos , Repetições WD40 , Animais , Descoberta de Drogas , Antineoplásicos/farmacologia
6.
Biomolecules ; 13(9)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759806

RESUMO

SUPPRESSOR OF MAX2-LIKE 6, 7, and 8 (SMXL6,7,8) function as repressors and transcription factors of the strigolactone (SL) signaling pathway, playing an important role in the development and stress tolerance in Arabidopsis thaliana. However, the molecular mechanism by which SMXL6,7,8 negatively regulate drought tolerance and ABA response remains largely unexplored. In the present study, the interacting protein and downstream target genes of SMXL6,7,8 were investigated. Our results showed that the substrate receptor for the CUL4-based E3 ligase DDB1-BINDING WD-REPEAT DOMAIN (DWD) HYPERSENSITIVE TO ABA DEFICIENT 1 (ABA1) (DWA1) physically interacted with SMXL6,7,8. The degradation of SMXL6,7,8 proteins were partially dependent on DWA1. Disruption of SMXL6,7,8 resulted in increased drought tolerance and could restore the drought-sensitive phenotype of the dwa1 mutant. In addition, SMXL6,7,8 could directly bind to the promoter of SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2.3 (SnRK2.3) to repress its transcription. The mutations in SnRK2.2/2.3 significantly suppressed the hypersensitivity of smxl6/7/8 to ABA-mediated inhibition of seed germination. Conclusively, SMXL6,7,8 interact with DWA1 to negatively regulate drought tolerance and target ABA-response genes. These data provide insights into drought tolerance and ABA response in Arabidopsis via the SMXL6,7,8-mediated SL signaling pathway.


Assuntos
Arabidopsis , Hipersensibilidade , Humanos , Resistência à Seca , Arabidopsis/genética , Ácido Abscísico/farmacologia , Repetições WD40 , Fatores de Transcrição/genética , Sacarose , Proteínas de Ligação a DNA/genética
7.
Plant Cell ; 35(11): 4002-4019, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648256

RESUMO

Heading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type. Ehd5, which encodes a WD40 domain-containing protein, is induced by light and follows a circadian rhythm expression pattern. Transcriptome analysis revealed that Ehd5 acts upstream of the flowering genes Early heading date 1 (Ehd1), RICE FLOWERING LOCUS T 1 (RFT1), and Heading date 3a (Hd3a). Functional analysis showed that Ehd5 directly interacts with Rice outermost cell-specific gene 4 (Roc4) and Grain number, plant height, and heading date 8 (Ghd8), which might affect the formation of Ghd7-Ghd8 complexes, resulting in increased expression of Ehd1, Hd3a, and RFT1. In a nutshell, these results demonstrate that Ehd5 functions as a positive regulator of rice flowering and provide insight into the molecular mechanisms underlying heading date.


Assuntos
Flores , Oryza , Ritmo Circadiano , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Repetições WD40/genética
8.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569867

RESUMO

WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a highly conserved gene from yeast to humans. It actively participates in DNA replication, playing a crucial role in DNA damage repair and the cell cycle, contributing to centromere formation and sister chromosome segregation. Notably, several studies have implicated WDHD1 in the development and progression of diverse tumor types, including esophageal carcinoma, pulmonary carcinoma, and breast carcinoma. Additionally, the inhibitor of WDHD1 has been found to enhance radiation sensitivity, improve drug resistance, and significantly decrease tumor cell proliferation. This comprehensive review aims to provide an overview of the molecular structure, biological functions, and regulatory mechanisms of WDHD1 in tumors, thereby establishing a foundation for future investigations and potential clinical applications of WDHD1.


Assuntos
Carcinoma , Neoplasias Pulmonares , Humanos , Repetições WD40 , Carcinogênese/genética , Transformação Celular Neoplásica , Proteínas Oncogênicas
9.
Cell Mol Life Sci ; 80(8): 218, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470863

RESUMO

BACKGROUND: Abundantly expressed factors in the oocyte cytoplasm can remarkably reprogram terminally differentiated germ cells or somatic cells into totipotent state within a short time. However, the mechanism of the different factors underlying the reprogramming process remains uncertain. METHODS: On the basis of Yamanaka factors OSKM induction method, MEF cells were induced and reprogrammed into iPSCs under conditions of the oocyte-derived factor Wdr82 overexpression and/or knockdown, so as to assess the reprogramming efficiency. Meanwhile, the cellular metabolism was monitored and evaluated during the reprogramming process. The plurpotency of the generated iPSCs was confirmed via pluripotent gene expression detection, embryoid body differentiation and chimeric mouse experiment. RESULTS: Here, we show that the oocyte-derived factor Wdr82 promotes the efficiency of MEF reprogramming into iPSCs to a greater degree than the Yamanaka factors OSKM. The Wdr82-expressing iPSC line showed pluripotency to differentiate and transmit genetic material to chimeric offsprings. In contrast, the knocking down of Wdr82 can significantly reduce the efficiency of somatic cell reprogramming. We further demonstrate that the significant suppression of oxidative phosphorylation in mitochondria underlies the molecular mechanism by which Wdr82 promotes the efficiency of somatic cell reprogramming. Our study suggests a link between mitochondrial energy metabolism remodeling and cell fate transition or stem cell function maintenance, which might shed light on the embryonic development and stem cell biology.


Assuntos
Proteínas Cromossômicas não Histona , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Glicólise/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Repetições WD40 , Proteínas Cromossômicas não Histona/genética
10.
J Med Chem ; 66(12): 8310-8323, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37307526

RESUMO

WDR5 is a critical chromatin cofactor of MYC. WDR5 interacts with MYC through the WBM pocket and is hypothesized to anchor MYC to chromatin through its WIN site. Blocking the interaction of WDR5 and MYC impairs the recruitment of MYC to its target genes and disrupts the oncogenic function of MYC in cancer development, thus providing a promising strategy for the treatment of MYC-dysregulated cancers. Here, we describe the discovery of novel WDR5 WBM pocket antagonists containing a 1-phenyl dihydropyridazinone 3-carboxamide core that was identified from high-throughput screening and subsequent structure-based design. The leading compounds showed sub-micromolar inhibition in the biochemical assay. Among them, compound 12 can disrupt WDR5-MYC interaction in cells and reduce MYC target gene expression. Our work provides useful probes to study WDR5-MYC interaction and its function in cancers, which can also be used as the starting point for further optimization toward drug-like small molecules.


Assuntos
Neoplasias , Repetições WD40 , Humanos , Genes myc , Cromatina , Neoplasias/genética , Ensaios de Triagem em Larga Escala , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
J Mol Endocrinol ; 71(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256579

RESUMO

WD40 repeat-containing proteins play a key role in many cellular functions including signal transduction, protein degradation, and apoptosis. The WD40 domain is highly conserved, and its typical structure is a ß-propeller consisting of 4-8 blades which probably serves as a scaffold for protein-protein interaction. Some WD40 repeat-containing proteins form part of the corepressor complex of nuclear hormone receptors, a family of ligand-dependent transcription factors that play a central role in the regulation of gene transcription. This explains their involvement in endocrine physiology and pathology. In the present review, we first touch upon the structure of WD40 repeat-containing proteins. Next, we describe our current understanding of the role of WD40 domain-containing proteins in nuclear receptor signaling, e.g., as corepressor or coactivator. In the final part of this review, we focus on WD40 domain-containing proteins that are associated with endocrine pathologies. These pathologies vary from isolated dysfunction of one endocrine axis, e.g., congenital isolated central hypothyroidism, to more complex congenital syndromes comprising endocrine phenotypes, such as the Triple-A syndrome.


Assuntos
Proteínas , Repetições WD40 , Proteínas/metabolismo , Transdução de Sinais , Núcleo Celular/metabolismo , Proteínas Correpressoras/genética
12.
Cancer Lett ; 556: 216058, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627049

RESUMO

One of the most abundant protein-protein interaction domains in the human proteome is the WD40 repeat (WDR) domain. A Gene Expression Omnibus dataset revealed 37 differentially expressed WDR domain genes in bladder cancer (BC). WD repeat domain 54 (WDR54), an upregulated WDR domain gene, was selected for further investigation. Sixty pairs of frozen BC tumor and non-malignant bladder tissues and 83 paraffin-embedded BC tissue specimens were obtained. Loss-/gain-of-function experiments were carried out using BC and xenograft tumor models. WDR54 was overexpressed in BC cells, and its high expression was linked to tumor stage and lymph node metastases in patients. WDR54 contributed to the tumorigenesis and metastasis of BC and impaired its chemosensitivity. WDR54 prevented the degradation and ubiquitination of the mediator of ErbB2-driven cell motility 1 (MEMO1). WDR54 also promoted the interaction between MEMO1 and insulin receptor substrate 1 (IRS1) and activated the IRS1/AKT/ß-catenin pathway in BC cells. Particularly, WDR54 depended on MEMO1 to exert its biological functions. Our study demonstrated the relevance of WDR54 in BC and provides insight into the molecular mechanism underlying BC.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias da Bexiga Urinária , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Repetições WD40
13.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574664

RESUMO

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Repetições WD40 , Animais , Humanos , Camundongos , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Animais , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
14.
Cell Rep ; 41(6): 111589, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351391

RESUMO

Calmodulin-regulated spectrin-associated proteins (Camsaps) bind to the N-terminal domain of WD40-repeat 47 (Wdr47-NTD; featured with a LisH-CTLH motif) to properly generate axonemal central-pair microtubules (CP-MTs) for the planar beat pattern of mammalian motile multicilia. The underlying molecular mechanism, however, remains unclear. Here, we determine the structures of apo-Wdr47-NTD and Wdr47-NTD in complex with a characteristic Wdr47-binding region (WBR) from Camsap3. Wdr47-NTD forms an intertwined dimer with a special cross-over region (COR) in addition to the canonical LisH and globular α-helical core (GAC). The basic WBR peptide adopts an α-helical conformation and anchors to a tailored acidic pocket embedded in the COR. Mutations in this target-binding pocket disrupt the interaction between Wdr47-NTD and Camsap3. Impairing Wdr47-Camsap interactions markedly reduces rescue effects of Wdr47 on CP-MTs and ciliary beat of Wdr47-deficient ependymal cells. Thus, Wdr47-NTD functions by recognizing a specific basic helical motif in Camsap proteins via its non-canonical COR, a target-binding site in LisH-CTLH-containing domains.


Assuntos
Cílios , Microtúbulos , Animais , Microtúbulos/metabolismo , Cílios/metabolismo , Proteínas/metabolismo , Sítios de Ligação , Repetições WD40 , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
15.
J Cell Mol Med ; 26(23): 5755-5766, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403194

RESUMO

The role of protein members containing the WD40 repeat domain in many diseases, including cancer, is well documented. However, the role of WD repeat domain 48 (WDR48) in hepatocellular carcinoma (HCC) and its molecular basis remain to be further investigated. In the present study, we report that WDR48 is downregulated in clinical HCC samples and evaluate the relationship between its expression and clinical features of HCC. In vitro experiments showed that WDR48 positively regulated the proliferation, invasion and metastasis of HCC cells and in vivo experiments showed that downregulation of WDR48 significantly inhibited the tumorigenicity of HCC cells. Mechanistically, WDR48 binds to the proto-oncogene transcriptional regulator c-Myc and stabilizes c-Myc expression by mediating its deubiquitination, thereby enhancing cell proliferation and EMT signalling. Our study demonstrates the oncogenic role of WDR48 and suggests that WDR48 can be an important target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Repetições WD40 , Neoplasias Hepáticas/genética , Carcinogênese/genética , Oncogenes
16.
World J Gastroenterol ; 28(27): 3435-3454, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36158256

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers. AIM: To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways. METHODS: RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC. RESULTS: Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/ß-catenin signalling pathway. CONCLUSION: We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/ß-catenin signalling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases , Repetições WD40 , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
17.
Biomed Pharmacother ; 154: 113663, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081287

RESUMO

The development of multidrug resistance (MDR) is one of the major challenges in the treatment of cancer which is caused by the overexpression of the ATP-binding cassette (ABC) transporters ABCB1 (P-glycoprotein) and/or ABCG2 (BCRP/MXR/ABCP) in cancer cells. These transporters are capable of reducing the efficacy of cytotoxic drugs by actively effluxing them out of cancer cells. Since there is currently no approved treatment for patients with multidrug-resistant tumors, the drug repurposing approach provides an alternative route to identify agents to reverse MDR mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. WDR5-0103 is a histone H3 lysine 4 (H3K4) methyltransferase inhibitor that disrupts the interaction between the WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia (MLL) protein. In this study, the effect of WDR5-0103 on MDR mediated by ABCB1 and ABCG2 was determined. We found that in a concentration-dependent manner, WDR5-0103 could sensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to conventional cytotoxic drugs. Our results showed that WDR5-0103 reverses MDR and improves drug-induced apoptosis in multidrug-resistant cancer cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, without altering the protein expression of ABCB1 or ABCG2. The potential sites of interactions of WDR5-0103 with the drug-binding pockets of ABCB1 and ABCG2 were predicted by molecular docking. In conclusion, the MDR reversal activity of WDR5-0103 demonstrated here indicates that it could be used in combination therapy to provide benefits to a subset of patients with tumor expressing high levels of ABCB1 or ABCG2.


Assuntos
Antineoplásicos , Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Repetições WD40
18.
Int J Biochem Cell Biol ; 151: 106293, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041702

RESUMO

Non-small cell lung cancer (NSCLC) ranks highly among malignant tumors in the world in terms of morbidity and mortality. By using bioinformatics, we screened and obtained a novel oncogene WDR43, a member of the WD-repeat protein encoding family that is closely related to tumor progression. PCR and immunohistochemistry showed that WDR43 is highly expressed in NSCLC. High WDR43 expression in NSCLC was associated with worse clinical symptoms and prognosis. Knocked down expression of WDR43 significantly impaired the migration and proliferation and cell-cycle arrest in G1 phase in NSCLC cell lines. WDR43 can directly interact with cyclin-dependent kinase 2 and induce the expression of cyclin proteins. Our results suggest that WDR43 is a promising target of protein-protein interaction inhibitors for treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Repetições WD40
19.
Immun Inflamm Dis ; 10(9): e681, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039642

RESUMO

BACKGROUND: WD repeat domain 6 (WDR6), a novel human WD-repeat gene, encodes a member of the WD repeat protein family, and its tumorigenic effect has rarely been reported so far. METHODS: Our study used Oncomine, TIMER2.0, GEPIA2, Kaplan-Meier plotter, PrognoScan, and TISIDB tools to analyze the differential expression between pan-cancer, especially lung cancer, and corresponding normal tissue, and further explore the prognostic and immunological role of WDR6 expression. RESULTS: Our results showed WDR6 was lower expressed in lung squamous cell carcinoma than in normal tissue, but WDR6 expression was correlated obviously with clinical stage in Lung adenocarcinoma. The overall survival, first progression, postprogression survival, and Relapse-free survival of lung cancer patients were longer in the WDR6 high-expression group than in the low-expression group. We found the expression of WDR6 significantly correlated with immune molecules, including immunomodulators, lymphocytes, and chemokines in lung cancer. CONCLUSION: WDR6 can be used as a prognostic marker for lung cancer and is significantly associated with immune cell infiltration.


Assuntos
Neoplasias Pulmonares , Repetições WD40 , Biomarcadores , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia , Prognóstico
20.
Chin Med J (Engl) ; 135(11): 1348-1357, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35830250

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is an extremely lethal malignancy. Identification of the functional genes and genetic variants related to PAAD prognosis is important and challenging. Previously identified prognostic genes from several expression profile analyses were inconsistent. The regulatory genetic variants that affect PAAD prognosis were largely unknown. METHODS: Firstly, a meta-analysis was performed with seven published datasets to systematically explore the candidate prognostic genes for PAAD. Next, to identify the regulatory variants for those candidate genes, expression quantitative trait loci analysis was implemented with PAAD data resources from The Cancer Genome Atlas. Then, a two-stage association study in a total of 893 PAAD patients was conducted to interrogate the regulatory variants and find the prognostic locus. Finally, a series of biochemical experiments and phenotype assays were carried out to demonstrate the biological function of variation and genes in PAAD progression process. RESULTS: A total of 128 genes were identified associated with the PAAD prognosis in the meta-analysis. Fourteen regulatory loci in 12 of the 128 genes were discovered, among which, only rs4887783, the functional variant in the promoter of Ring Finger and WD Repeat Domain 3 ( RFWD3 ), presented significant association with PAAD prognosis in both stages of the population study. Dual-luciferase reporter and electrophoretic mobility shift assays demonstrated that rs4887783-G allele, which predicts the worse prognosis, enhanced the binding of transcript factor REST, thus elevating RFWD3 expression. Further phenotypic assays revealed that excess expression of RFWD3 promoted tumor cell migration without affecting their proliferation rate. RFWD3 was highly expressed in PAAD and might orchestrate the genes in the DNA repair process. CONCLUSIONS: RFWD3 and its regulatory variant are novel genetic factors for PAAD prognosis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/patologia , Prognóstico , Locos de Características Quantitativas/genética , Ubiquitina-Proteína Ligases/genética , Repetições WD40 , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...